Lecture Series on 'Crystal Field Theory'

By Dr. Tarun Mistri Asstt. Prof. in Chemistry Dept. Of Chemistry Jhargram Raj College

(tarunmistrichem@gmail.com & 9476107334)

For M.Sc., NET, GATE.

Lecture-III

Experimental determination of Crystal field splitting ((Δ **0**):

- $\succ \Delta_{oct}$ is a measurable quantity (experimentally)
- In this case, Ti³⁺ (d¹) has a λ_{max} = 20,300 cm⁻¹ or 243 kJ mol⁻¹ for the energy required to promote an electron from the t_{2g} to e_g set.
- After splitting of d-orbital in Oh field, this complex is stabilized to the extent of 97 kJ/mol [243 x (-0.4)=-97 kJ/mol] wrt hypothetical spherical field. This extra stabilization of the complex is called crystal field stabilization energy (CFSE).

The optical absorption spectrum of $[Ti(H_2O)_6]^{3+}(3d^1, Oh)$

Here, wave-number $(1/\lambda) = 20,300 \text{ cm}^{-1} = 20,300 \text{ x} 100 \text{ m}^{-1} = 2.03 \text{ x} 10^6 \text{ m}^{-1}$.

Hence, $\Delta E = h_{U}=h(c/\lambda)=(6.625 \times 10^{-34} \text{ j-s-molecule}^{-1}) \times (3.0 \times 10^8 \text{ m/s}) \times (2.03 \times 10^6 \text{ m}^{-1}) =$ 4.034 × 10⁻¹⁹J-molecule⁻¹ = (4.034 × 10⁻¹⁹) × (6.023 × 10²³ J-mol⁻¹) = 243 KJ/mol. = Δ_{oct} **(1000 cm⁻¹ = 11.96 kJ/mol or 2.86 kcal/mol or 0.124 eV.)

* The UV-Vis absorption spectrum reveals that this transition occurs with a maximum at 20300 cm⁻¹ which corresponds to Δ_o (10Dq_o) 243 kJ/mol. However, this is applicable for one-electron transition which reflects the energy difference between t_{2g} & e_g. For more than one electronic systems electron-electron repulsion must be taken into consideration and hence calculation becomes may more difficult.

Dr. Tarun Mistri (JRC) Lecture-3

Significance of Dq₀:

The term Dq is the product of two terms D and q required in the quantitative treatment of CFT to describe the Hamiltonian operator of the system. Thus, D and q are the potential energy terms and in the Oh-crystal field, these are given by:

D=35 * Ze/4a⁵ and q= 2e r⁴/105 Hence, Dq = $ze^2 r^4/6 a^5$

If <u>point dipole</u> of ligands is considered then, 10 Dq is given by:

Dq= 5μ r⁴/6 a⁶.

Here Z= charge on the ligand, e= charge of the electron, a= M-L distance and r^4 = mean fourth power radius of d-electron (i.e the distance from the nucleus). However, here Dq is the energy difference between the t_{2g} and e_g set is 10 Dq for Oh-ligand field. This term indicates the extra stabilization of the complex which is called crystal field stabilization energy (CFSE).

Dr. Tarun Mistri (JRC)

C. K. Jørgensen's (notation) f and g

factors

$$\Delta_o = f (ligand) \cdot g (metal)$$

<i>g -</i> factors	<i>f</i> -factors	
3d ⁵ Mn(II) 8.0	Br -	0.72
3d ⁸ Ni (II) 8.7	<u>S</u> CN -	0.73
3d ⁷ Co(II) 9.0	CI -	0.78
3d ³ V(II) 12.0	N ₃ -	0.83
3d ⁵ Fe(III) 14.0	F ·	0.90
3d ³ Cr(III) 17.4	oxalate ²⁻	0.99
3d ⁶ Co(III) 18.2	H ₂ O	1.00
3d ⁹ Cu(II) 9.5	<u>N</u> CS -	1.02
3d ⁴ Cr(II) 9.5	CH₃C <u>N</u>	1.22
4d ⁶ Ru(II) 20.0	pyridine	1.23
3d ³ Mn(IV) 23.0	NH ₃	1.25
3d ³ Mo(III) 24.6	en (ethylenediamine)	1.28
4d ⁶ Rh(III) 27.0	bipy (2,2'-bipyridine)	1.33
4d ³ Tc(IV) 30.0	Phen (1:10-phenanthroline)	1.34
5d ⁶ Ir(III) 32.0	<u>C</u> N -	1.70
5d ⁶ Pt(IV) 36.0		

Concept of Pairing Energy

Spin Pairing Energy (P) is an increase in Energy (due to electrostatic repulsions) when an e⁻ is put into an occupied orbital.

(This is not an experimentally determined quantity)

(Higher stability)

triplet O₂ kinetically inert

N.B.- If the orbitals 5d) (4d. become bigger and diffuse so distance that the the between two electrons in the orbitals increase and hence the repulsion may decreases.

Πc = destabilizing energy for the Coulombic repulsion associated with putting two electrons into the same orbital.

$$\begin{array}{c}
1 \\
\pi_{g}^{*} \\
\text{High Energy}
\end{array}
\begin{array}{c}
2 \\
\pi_{g}^{*} \\
\text{Medium Energy}
\end{array}
\begin{array}{c}
3 \\
\pi_{g}^{*} \\
\text{Low Energy}
\end{array}$$

$$\begin{array}{c}
3 \\
\pi_{g}^{*} \\
\text{Low Energy}
\end{array}$$

E(ex)= 0 (With higher repulsion) Singlet O₂ highly reactive E(ex)= 0 (with moderate repulsion wrt first one) **Πe** = Stabilizing energy for electron exchange associated with two degenerate electrons having parallel (same) spin [<u>Key factor is</u> Hund's rule).

$$\mathbf{E}_{ex} = \frac{\mathbf{n}(\mathbf{n}-1)}{2} \mathbf{K}$$
 (K=constant

[n= number of unpair-electron in the (parallel) same spin]

Electron exchange in degenerate orbitalis.

Dr. Tarun Mistri (JRC) Lecture-3

Concept of High Spin and Low spin

High spin and low spin are two possible classifications of spin states that occur in coordination compounds. These classifications come from either the <u>ligand field theory</u>, which accounts for the energy differences between the orbitals for each respective geometry, or the <u>crystal field theory</u>, which accounts for the breaking of degenerate orbital states, compared to the pairing energy.

Low spin complex:

(L.S) =Complex containing lowest number of unpaired electrons High spin complex:

(H.S.)= Complex containing higher number of unpaired electrons (lower electrostatic interaction/ field or low field)

<u>Rule of Thumb:</u> [Δ =CFSE or LFSE]

- ✓ If 10 Dq (Δ_0) > P, then the corresponding complex will be Low-spin (L.S.).
- ✓ If 10 Dq (Δ_o) < P, then the corresponding complex will be High-spin (H.S.)
- ✓ If 10 $Dq_o = P$, then Low-spin ↔ Highspin ($\Delta_o = kT$) will be in equilibrium i.e here spin-state isomerism appears.

What can explain with the help of E _{exchange} ?						Fe(III)		
Exchange Energy	d	5	d ⁶ d ⁷		d ⁷		Comments	3d ⁵
$E = \sum n(n-1)/2$	H.S	L.S	H.S	L.S	H.S	L.S	Form the value of loss of E_{ex} , as it is minimum for	dn
c _{ex} = 2n(n-1)/2	(nign spin)	(low spin)	(nign spin)	(low spin)	(nign spin)	(low spin)	d ⁶ ,d ⁷ system, so they has	d ⁵ (H.S.)
E _{ex} (α–spin)	10K	3K	10K	3K	10K	6K	a tendency to form L.S- complex. So, Co(II) & **Co(III) complexes are	d^5
E _{ex} (β -spin)	0	1K	0	3K	1K	3K	most of the cases L.S in nature. While	(1.5.)
E _{ex} (total)	10K	4K	10K	6K	11K	9K	d ⁵ complexes [Mn(II), Fe(III)] are usually H.S as loss of E is	d ⁶ (L.S.)
Difference in exchange	(10-4)k (10-6)k		(11-9)K =2K compensated by the		$\begin{array}{c} \text{maximum which is not} \\ \text{compensated by the} \end{array}$	d7 (H.S.)		
energy E _{ex} (From H.S to L.S)	=6K (maximum		=4 (#moo	4K derate	(minimum loss)		CFSE value of d ⁵ system. ** <u>Exceptional:</u> CoF ₆] ⁻³	d7 (L.S.)
	loss) [can't be compensated easily by CFSE]		lo	ss)	[#can be compensated easily by High		H.S. complex of Co(III) due to very weak field F-ligands.	(<u>Conside</u>

Lecture-3

[N.B.- Co(NH₃)₆]²⁺, Co(NH₃)₆]³⁺, Co(en)₃]³⁺, Co(NH₃)₄F₂]³⁺: L.S. Oh Complexes.]

CFSE]

High spin (H.S.) or Low spin (L.S.)?

<u>CFSE Calculation for Octahedral System (Δ₀)</u>:

Definition of CFSE:

The crystal field stabilization energy (CFSE) is the gain in the energy (EXTRA STABILIZATION) achieved by dⁿ systems due to preferential filling up of orbitals (resulting by spherical non interactions) by electrons. Actually it refers to the energy differences between the energy of electron configuration of the ligand filed and energy of the electron the configuration in the isotropic field. It determines the energy differences between the two sets of orbital splitting.

TM (JRC)

Understanding of CFSE

TOP 10 RICHEST PEOPLE IN THE WORLD

Bezos \$115 billion

Slim

\$53.9 billion

\$49.7 billion

Gates

Larry

Page

\$49 billion

3

9

Arnault \$67.3 billion

TOI

Ortega \$59.2 billion

5

Lecture-3

[CFSE = E(Isotropic field) - E(ligand field)-)]

CFSE Calculation for Td System

d ⁷	H.S. (by virtue of low CFSE)			
Configuration	$e^4 t_2^3$			
E _{after} splitting	(4) * (-0.6 Δ_t) + 3 * (+ 0.4 Δ_t) + 2P	$= -1.2 \Delta_t + 2P$ = - 1.2 *4/9 Δ_0 + 2P = -0.533 Δ_0 + 2P = 0.533 * (10 Dq ₀) +2P = [- 5.33 Dq ₀ + 2P]		
E _{before} splitting	2P			
CFSE(Td)	 = E(ligand field) -E(Isotropic field)] = [- 5.33 Dq_o + 2P] -[2P] = - 5.33 Dq_o 			

Lecture-3 [CFSE = E(ligand field)-E(Isotropic field)]

TM (JRC)

CFSE Calculation for Sq. Planar System

d- orbitals in Sq. Planar (D _{4h}) field	Energy in Dq _o	Corresponding symmetry	
E x ² - y ²	+ 12.28	b _{1g} (1)	
ху	+ 2.28	b _{2g} (1)	
z ²	- 4.28	a _{1g} (1)	
xz, yz	- 5.14	e _g (2)	

Lecture-3

dn	CFSE (Td)	CFSE (Oh)
1	-2.67 Dq _o	-4 Dq _o
2	-5.33 Dq _o	-8 Dq.
3	-3.55 Dq	-12 Dq _o
4	-1.78 Dq	$-6 Dq_0$ (h.s.)
		$-16 \text{ Dq}_{0} + 1 \text{ PE}$ (l.s.)
5	0 Dq _o	$0 \operatorname{Dq}_{0}(h.s.)$
	10	$-20 \text{ Dq}_{0} + 2 \text{ PE}$ (l.s.)
6	-2.67 Dq _o	$-4 \operatorname{Dq}_{0}(h.s.)$
		$-24 \text{ Dq}_{0} + 2 \text{ PE}$ (l.s.)
7	-5.33 Dq _o	$-8 Dq_{0}$ (h.s.)
		-18 Dq _o + 1 PE (l.s.)
8	-3.55 Dq _o	-12 Dq
9	-1.78 Dq	-6 Dq
10	$0 \mathrm{Dq}_{0}$	$0 \mathbf{Dq}_{o}$

No. of d electrons	CFSE (Strong field)	CFSE (Sq. Planar)
1	-0.514Δ	- 5.14
2	-1.028Δ	-10.28
3	-1.456Δ	-14.56
4	-1.228Δ	-12.28
5	$-1.742 \Delta + P$	- <mark>17.42 + P</mark>
6	$-2.256\Delta + P$	- 22.56 + P
7	$-2.684\Delta + P$	-26.84+ P
8	$-2.456\Delta + P$	-24.56 + P
9	-1.228Δ	- 12.28
10	-0Δ	0

Summery of CFSE values in Oh, Td and Sq. Planar System

Series-1: For Td (H.S.) Series-2: For Oh (H.S.) Series-3: For Oh(L.S.) Series-4: For Sq. Planar

> Dr. Tarun Mistri (JRC) Lecture-3

N.B.- 1. e-set acting as bonding/non-bonding where as t_2 set acting as anti-bonding for Td.

- 2. t_{2g} set acting as bonding/non-bonding where as e_g set acting as anti-bonding in Oh.
- 3. d^{1-3} (Oh) and d^{8-10} no spin-cross in Oh field.
- 4. dxz, yz and dz2 acting as bonding exclusively whereas dxy moderately bonding while dx2-y2 as very high energy anti-bonding orbital in Sq. Planar field.

**CFSE Order: $\Delta_{Sp} > \Delta_{Oh} > \Delta_{Cubic} > \Delta_{Td}$

Preferential geometry for Ni(II) (d⁸) in general cases based on CFSE.

Ni(II) (3d ⁸)						
	Oh	Td	Sq. Planar	Gain in CFSE		
Electronic configuration	$t_{2g}^{6}e_{g}^{2}$	$e^4 t_2^3$	d_{xz}^2 , $d_{yz}^2 < d_{z2}^2 < d_{xy}^2 < d_{x2-y2}^0$	Ni(II) 24.56		
CFSE (Dq _o)	(-4 x 6+ 6 x 2)	[-6 x 4+ 4 x 3] x	$[(-)5.14 \text{ x } 4 + (-)4.28 \text{ x } 2 + (+) 2.28 \text{ x } 2 + (+) 12.28 \text{ x } 0] Dq_o$	Sq.		
	= - 12 Dq _o	(4/9) Dq _o	= -24.56 Dq _o	12 Pl.		
		= - 5.33 Dq _o		5.33 Ob		
Stability		Td				
Order of Ni(II)	Hence Ni(II) pr					
&	& or Td.					
Conclusion	To obtained such	Dr. Tarun Mistri (JRC)				
	coordinated (C.I					
<u>CN⁻ pi-acid ligand.</u>						
Lecture-3	B [N.B	- Similar observati	ons also applicable for Cu(II) (d ⁹)]			

CFSE Calculation in cm⁻¹ unit.

Lecture-3

CFSE or LFSE (modern concept)??

L er, attraction Mⁿ⁺

Lecture-3

Since there is an interactions between the ligands with d-orbital of metal which destroy the degeneracy of the metal orbitals giving rise to redistribution of energy levels with gain in energy (as a result of the non-spherical interaction), so it is better to use Ligand field stabilization energy (LFSÉ) But however it is as same as CFSE and its calculation also remain unchained.

